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CONVENIENT UNIMOLECULAR SOURCES OF ARYLOXYL RADICALS
I - ARYLOXYOXALYL CHLORIDES

by David A. Modarelli, Frank C. Rossitto, Paul M. Lahti*

Department of Chemistry, Lederle Graduate Research Tower,
University of Massachusetts, Amherst, MA 01003

Abstract: UV photolysis of readily synthesized aryloxyoxalyl chloride half-esters provides a new unimolecular source
of aryloxyl radicals, as shown by ESR and UV-vis spectroscopy.

Although phenoxyl radicals have been generated and investigated for a long time, such studies have usually

been carried out under solution phase bimolecular oxidative conditions, or by direct photolysis of phenols. We hve

recently had the occasion to desire a method for efficient unimolecular photochemical generation of phenoxyl and

related aryloxyl radicals, and have found that aryloxyoxalyl chloride half-esters provide a readily available

photochemical source of aryloxyl radicals. -- f. ZV

Platz and coworkers have recently shown 2 that halogen substituted molecules can be convenient photochemical

sources of some diradicals. Although in this method, a photochemical electron donor is usually required to cause loss of

atomic chlorine and desired generation of radical centers, we felt that, by analogy, aryloxyoxalyl chlorides (AOC's)

might undergo photolysis, presumably with production of the desired aryloxyl radicals, atomic chlorine, and two

molecules of carbon monoxide.

Phenols 1-43 were deprotonated using butyl lithium/hexanes and allowed to react with excess recently

distilled oxalyl chloride. Removal of excess oxalyl chloride in vacuo followed by low temperature recrystallization in

OH OCOCOCi 0.
tBU Bu 1. BuI tBU Buhv tBU B

2. CF-COCO-CI lt U ~B

R R R

1 R=tBu 5 R=tBu 9 R tBu
2 CH 3  6 CH 3  10 CH 3
3 OCH 3  7 OCH3  11 OCH3
4 C6 H 5  8 C 6 H 5  12 C 6 H 5

pentane to give product AOC's 5-8. 4 Although sensitive to atmospheric water, these molecules appear to be reasonably

stable at room temperature, and may be stored at -20 0 C under nitrogen for up to a month.



Figure 1: ESR Spectra of Phenoxyl Radicals Generated by Photolysis of AOC's 5-8.
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All spectra obtained in degassed benzene solution at room termperature at 9.79 GHz, after irradiation for 5-20 min with
a 1000W Xenon arc lamp (Kratos). Midfields of each transition, and spectral width scales are indicated in each
spectrum in gauss. Spectra were persistent for days under these conditions.



Upon photochernical irradiation of the samples (oxygen-free benzene, 1000 W Xenon arc lamp), strong,

persistent ESR signals were observed, as well as color changes in the samples. Figure 1 (see preceeding page) shows

typical ESR spectra obtained under these conditions, which are clearly due to the formation of sterically blockaded

stabilized radicals 9-12, as confirmed by comparison to ESR and UV-vis spectra generated by basic K 3Fe(CN)6

oxidation of 1-4. 5 The ESR spectra from our photochemical method were strong and remarkably free of obvious radical

impurities, indicating the overall efficacy of the method.

Presumably photolysis causes initial cleavage of the C-Cl bond in the AOC's, followed by rapid loss of two

molecules of carbon monoxide, a thermodynamically strong driving force that favors formation of the aryloxyl radicals.

The final fate of atomic chlorine is not experimentally clear at this point, but it is notable that the ESR spectra of

photolyzed AOC's are so free of impurities. In the photolysis of AOC 6, for instance, atomic chlorine could potentially

abstract a hydrogen atom from the para-methyl group, giving a benzyl radical that could be seen in the ESR. As the

appropriate spectrum in Figure 1 shows, either this process does not occur, or such a resultant benzyl radical is too short-

lived to be seen in our ESR experiments, since only the observed peaks are attributable to radical 10 (see however the

accompanying paper).

Our photochemical method also works effectively under rigid matrix conditions, unlike previous solution

oxidation methods. Photolysis of the AOC's at 77K in frozen benzene polycrystalline matrices gives ESR active

samples that may be thawed to yield the very same ESR and UV-vis spectra6 that are produced by simple solution

phase photolysis, confirming the spectral assignments. Similar results are observed using frozen glassy matrices

(methylcyclohexane, decahydronaphthalene, 2-methyltetrahydrofuran).

Besides tests of overall efficiency, a number of outgrowths and variations of this method may be easily

envisioned. In addition to the well-known phenoxyl radical systems generated to test this method, a variety of

previously unexamined phenoxyl radical species is under investigation in our group, using the synthetic techniques in

this and the following paper under rigid matrix conditions and making characterization of these species possible

without steric blockading of the oxyl radical center. In addition, other radicals may perhaps be generated by related

chemistry, such as arylsulfyl and arylaminyl radicals. We are further exploring the potential uses7 of this chemistry,

and will report on such work in future publications.
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